
An infinity norm constrained attack for the NIPS 2017 Competition

Track

Nozdryn-Plotnicki, Aleksey
Wightman, Ross

Abstract

We present our attacks for the NIPS 2017 Adversarial Attacks and Defenses competition. We placed
5th (Targeted) and 9th (Non-targeted). Images were perturbed within an infinity norm limit in order to
fool black box classifiers submitted by other competitors. Our iterative attack makes a change of variable
in order to perform unconstrained optimization with Adam. We introduce differentiable augmentations
and resizes in order to defeat simple augmentation-based defenses and to attack ensembles models with
different input sizes. We pre-compute single, targeted, input-agnostic perturbations that transfer well
between models.

1 Introduction

Surprisingly, perhaps, it is possible to manipulate the
pixels of a natural image in such a way that a deep
neural network classifier is fooled into predicting the
wrong class, when a human would consider the true
class of the image to be unchanged. This gives rise
to concerns that deep neural networks deployed in
the real world could be vulnerable to attacks from
adversaries. A self-driving car that misinterprets its
environment could have tragic consequences. Thus
there is great interest in establishing what can be
done in terms of hardening classifiers to be resistant
to such attacks, and to establish what are the
strongest attacks.

It is perhaps less surprising that a white box
attack is possible. With full access to a model
and its weights, it is possible to craft very small
perturbations to a natural image in order to fool a
deep neural network. It is more surprising that it is
possible attack a known model in a white box manner,
but then have that image also fool a different neural
network with a different architecture and different
weights. This is the most likely real-world scenario.

In August and September, 2017, Kaggle and
Google Brain hosted a trio of competitions for
the NIPS 2017 Competition Track, ”Adversarial
Attacks and Defenses”. The competitions created an
interesting adversarial images environment:

• Black box: Target classifiers being attacked
were truly black box, not artificially black box

as in a typical research paper.

• Defenses were highly engineered: Rather than
pure or idealized, competitors were free to do
whatever works

• Limited computation: Approaches needed to be
computationally efficient, a likely constraint in
any real-world application

1.1 Competition basics

In the ”Targeted Adversarial Attack” competition,
the inputs are sets of 100 images and 100 target
classes. Attacks are given 500 seconds per set
to create 100 adversarial images that will cause a
classifier to output the given target class. In the
”Non-targeted Adversarial Attack” competition, the
situation is the same, except the goal is simply for
the classifier to output the incorrect class rather than
the correct one. For each batch of 100 images, an
infinity-norm max epsilon is selected randomly out
of 4, 8, 12, or 16 (in [0,255] pixel space). Any
output images from attacks will be clipped so that the
infinity-norm of the difference between the original
image and the attacked image is less than or equal to
the max epsilon.

In the ”Defense Against Adversarial Attack”
competition, the inputs are sets of 100 images that
have been attacked in the other two tracks. Defenses
are given 500 seconds to output a set of 100 classes
for each batch.

1



All attacks are run against all sets of 100
images. All defenses are run against all attacked sets.
Defenses score a point for every image they correctly
classify. Targeted attacks score a point for every
time a defense outputs the target class. Non-targeted
attacks score a point for every time a defense outputs
the incorrect class. The goal is to maximize score.

Attacks and defenses were run on a n1-highmem-4
Google Cloud Platform instance with one K80 GPU
attached to it. This is the environment in which the
time limit is enforced.

1.2 Motivation

We sought to create attacks that were robust against
simple defensive augmentations.

In the first round of the competition we,
independently and un-merged, were very successful
using simple augmentation for defense. We placed 1st
and 2nd with normalized scores of 89.9% and 87.2%,
surpassing even the baseline adv inception v3 model
[4]. All with only naturally trained models.

Our best implementation in tensorflow took 5
crops, doubled that by mirroring, and doubled that
again by blurring with a Gaussian blur radius 1.5. All
20 samples were evaluated with the Inception Resnet
v2 [2] model and ensembled with a simple mean of
the probability.

The time/compute constraint in the competition
was somewhat tight, so we could benefit greatly
for anything that could be pre-computed with
unbounded compute. In our case, the universal
perturbations take that opportunity.

2 Our iterative attack

Our attack is in the same gradient-based iterative
family with the Fast Gradient Sign Method (FGSM)
[5] and projected gradient descent (PGD) [6]
attacks. We optimize a loss function by changing
a perturbation to the image. Our attack performs
a change of variable in order to do unconstrained
gradient descent.

We perform black-box attacks by building white
box attacks against substitute defenses, ”target
models”, that we do have access to, seeking to
maximize transferability as we do so. Ironically, in
the case of the competition, most defenses were in fact
using models that were available publicly, so truly a
mix of both was happening.

We maximize transferability by minimizing the
loss, introducing augmentations to the target model,
and by attacking as large and diverse an ensemble as
possible.

2.1 Loss function

We seek to minimize the cross-entropy loss of the
perturbed image for a target model, for some target
class. In the case of a targeted attack, this is
obviously the target.

For non-targeted attacks we have several choices:

• Maximize the cross-entropy loss for the
class predicted by the target model for the
unperturbed image

• Minimize the cross-entropy loss based on the
outputs of the target model for the unperturbed
image:

– Least likely class

– Random class

– nth most likely class

2.2 Box constraints

In principle we face two constraints. The
perturbed image must remain a valid image and the
perturbation is constrained by the infinity norm.

x+ δ ∈ [0, 1]
n

δ ∈ [−ε , ε ]
n

We can re-write this as a single constraint for each
pixel value i:

−min(xi, ε ) ≤ δi ≤ min(1− xi, ε )

We employ a change of variable w:

δi (wi, xi) =

{
min(xi, ε ) · tanh(wi) wi ≤ 0

min(1− xi, ε ) · tanh(wi) wi ≥ 0

wi ∈ [−∞,∞]

This then allows us to perform an unconstrained
gradient descent.

2.3 Augmentations

Simple image augmentations have been shown to
dramatically foil black box attacks, and indeed we
confirmed this in the first round of the competition.
A blur [7] and random crops/foveation [8] were
very effective. We seek to create adversarial
examples that are robust to this defense. To do
so, we perform differentiable augmentations after
perturbing the image and before passing to the target
model. This allows us to compute derivatives back
to our w variable for optimization. We perform
stochastic gradient descent, drawing randomly from
a distribution of augmentations on a per-batch basis,
in order to minimize the expected loss across a
distribution of augmentations.

2



2.4 Image sizes

For some networks, images must be resized or
cropped before they can be input. Furthermore
following our augmentations, sizes may also have
changed. We place a differentiable bilinear resize
between the final augmented perturbed image and
the input to each model in the ensemble. In this way
crops of varying sizes can be taken, blurring ”valid”
convolutions without padding can be applied, and
models with disparate input sizes can all be optimized
simultaneously.

2.5 Examples

Recall that our attacks seek to maximize fooling
while adhering to an infinity norm constraint rather
than trying to minimize the change to the image.
Because of that, the examples in this section are not
your typical examples for an adversarial images paper
where attacked images are practically indiscernible
from the original.

Not only is it very visible that the image has been
modified, the attack quite evidently contains a lot of
structure.

Figure 1: Gazelle from competition dataset, target
collie. Optimized at ε = 16 for 100 iterations against
an ensemble of: adv inception v3 [1], resnet18 [10],
and squeezenet1.1 [11]

Figure 2: Bolloon from competition dataset, target
earthstar. Optimized at ε = 16 for 100 iterations
against an ensemble of: adv inception v3, resnet18,
and squeezenet1.1

Figure 3: Pier from competition dataset, target
pillow. Optimized at ε = 16 for 100 iterations
against an ensemble of: adv inception v3, resnet18,
and squeezenet1.1

3 Our universal attack

Using a variant of our iterative attack, we craft
targeted universal perturbations. Single deltas that

3



can be added to any image in order to fool a black
box model. We again attack a substitute defense in
a white box manner. We maximize transferability
by minimizing the loss, using augmentations, and
attacking a large, diverse ensemble as the target
model.

We draw random batches of images from the
ImageNet training set and perform stochastic
gradient descent in order to minimize our
expected loss for the target class when applying
the perturbation to images from the ImageNet
distribution.

At attack time, the tanh(w) ∈ [−1, 1] is
multiplied by ε , added to the image, and clipped
to [0, 1]

3.1 Box constraints

In this situation it is impossible to perform the
change of variable to satisfy the constraint that the
perturbed image remain valid because each image in
each batch gives rise to a different constraint. Instead
we simply clip: x + δ ∈ [0, 1] with a change of
variable:

δi (wi) = ε · tanh(wi)

wi ∈ [−∞,∞]

3.2 Examples

In order to visualize the attacks, we take the
tanh(w) ∈ [−1, 1] and scale it to [0, 255] for pixel
values. Thus the way to interpret these images
is that black regions are subtracting from all pixel
values, white regions adding, and green regions are
subtracting from RB and adding to G. A mid grey
pixel of (127, 127, 127) would represent no change.

All below are trained on batches of 4 from the
imagenet training set.

Figure 4: Jigsaw puzzle crafted against an ensemble
of: ens adv inception resnet v2 [9], inception v3,
adv inception v3, resnet101, dual path net 68 [12],
densenet 161 [13], and alexnet. Trained on at ε = 16
for 44,600 iterations.

Figure 5: Spider web crafted against an ensemble
of: ens adv inception resnet v2, inception v3, adv
inception v3, resnet101, dual path net 68b extra,
and densenet 161. Trained on at ε = 8 for 22,300
iterations.

Figure 6: Television crafted against an ensemble
of: ens adv inception resnet v2, inception v3, adv
inception v3, resnet101, dual path net 68, densenet
161, and alexnet. Trained on at ε = 16 for 41,100
iterations.

4



Figure 7: Images attacked by a jigsaw perturbation
at ε = 16.

3.3 Selective universal attack

Given a set of images, a target model, and a set
of universal perturbations, we perform a selective
attack. We try each universal perturbation against
each image and keep the one that maximized the
cross-entropy loss for the target model and the
original most likely class for the unperturbed image.
During this, we also keep track of whether or not the
target model was successfully fooled.

All images for which the target model was not
successfully fooled pass to a second stage, where we
use our normal iterative attack.

4 Implementation

We perform our attacks using Pytorch. Pytorch is
fast and brilliantly easy to work with in a research
situation.

We find it best to tune our attacks differently for
different ε constraints.

We ensemble target models by taking a weighted
arithmetic mean of their output log probabilities.

For compactness, any missing details below can

be assumed to be the same as stated most recently
above.

We did not use augmentations when performing
our attacks because the time penalty was too costly,
but we made heavy use of them when training
universal perturbations.

4.1 Targeted attack

At ε = 4 We attack an ensemble of the ”ens adv
inception resnet v2” from the cleverhans examples,
trained as per [9] and the basic inception v3 available
from tensorflow-slim, the same that is also included
in the cleverhans examples. We weigh the first
network at 4 and the later at 1 when ensembling.
We weigh the first network more heavily because
inception v3 is laughably easy to fool, and we can
increase our chances of fooling the first network
without compromising. We use the Adam optimizer
with a learning rate of 0.2 and betas 0.9 and 0.999.
We run a batch size of 20 and typically get in about
35 iterations before the time budget for the batch
runs out.

At ε = 8 we are able to introduce a third model
to our ensemble, the adversarially trained inception
v3 from the cleverhans examples. In this case our
weights are 1, 2, and 1 for ens adv inception resnet
v2, inception v3, and adv inception v3 respectively.
These weights allow us to get benefits of having the
other networks in the ensemble without sacrificing
performance on inception v3. We typically get in
about 27 iterations before time runs out.

At ε = 12 and 16 we are able to change
the weighting to 4, 1, 1, as with a high epsilon
we can put greater emphasis on attacking ens adv
inception resnet v2 while still maintaining success
against inception v3.

4.2 Universal perturbation training

We select target classes by hand. The important
observation is that the universal attacks are semantic
in nature. That is, they are shaped very much by the
target class in question, rather than the intricacies
of the weights and blind spots of the target models.
We therefore seek to select target classes that would
make good semantic attacks when combined with an
image. Three such classes are:

• Jigsaw puzzle: A jigsaw puzzle can be any
image as long it has the characteristic edges

• Spider web: A spider web can hang
transparently in front of what would otherwise
be an image of something else

5



• Monitor: A monitor could have anything on it,
as long as it has a bezel

We trained against enormous, diverse ensembles
including the adversarially trained models made
available for the competition, and other base models.
One example is en ensemble of ens adv inception
resnet v2, inception v3, adv inception v3, resnet101,
dual path net 68, densenet 161, and alexnet. Batch
sizes were therefore small, typically only 4. We
trained at varying ε values and for varying iterations.
This was a time consuming, ad hoc affair and was not
explored scientifically.

4.3 Non-targeted attack

At ε = 4 our universal perturbations are too weak
to be effective, so we elect to simply use the iterative
attack and target the 3rd highest predicted class. The
ensemble is the same three models from above, but
equally weighted. We get approximately 27 iterations
in. We include all three models here, where we
did not for the targeted attack because non-targeted
attacks are easier to transfer and they transfer better
when attacking a larger ensemble.

At ε = 8 , 12, and 16 we perform the
same selective universal attack, falling back to our
iterative attack. We select from a dozen of the
best universal perturbations we created, targeting
brain coral, jigsaw, monitor, and spider web. We

evaluate these examples against the same three
models, equally weighted. We fall back to an iterative
attack, and depending on the situation can get in over
40 iterations per batch.

4.4 Competitive factors

The dynamics of the competition were highly skewed
by the sample models and sample code. As was
possible to determine by studying the development
round results, a significant proportion of the defenses
were indistinguishable from the inception v3 sample
submission. Furthermore a lot of competitors
appeared to be using the ens adv inception resnet
v2 out of the box.

We essentially have the opportunity to perform
a white box attack on a significant proportion of
defenses. Unfortunately our experiments showed
that methods for increasing the transferability of our
attack cost us more points than we gained because it
was simply too easy to perform a white box attack,
and too hard to craft a strong black box attack in
the time allotted. This meant that we did not choose
to use augmentation at evaluation time, and we did
not choose to include other models in the ensemble.
Both of which increase transferability, but sacrifice
performance against inception v3 et al.

The goal, of course, was not to beat the strongest
defense, but to beat the most defenses.

References

[1] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna Rethinking the inception architecture for
computer vision In CVPR, 2016

[2] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of
residual connections on learning In AAAI, 2017

[3] F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel Ensemble adversarial training: Attacks
and defenses arXiv preprint arXiv:1705.07204, 2017

[4] Alexey Kurakin, Ian Goodfellow, Samy Bengio Adversarial Machine Learning at Scale arXiv:1611.01236

[5] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy Explaining and Harnessing Adversarial Examples
arXiv:1412.6572

[6] Alexey Kurakin, Ian Goodfellow, Samy Bengio Adversarial Machine Learning at Scale arXiv:1611.01236

[7] Nicholas Carlini, David Wagner Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
Methods arXiv:1705.07263

[8] Yan Luo, Xavier Boix, Gemma Roig, Tomaso Poggio, Qi Zhao Foveation-based Mechanisms Alleviate
Adversarial Examples. arXiv:1511.06292

6



[9] Florian Tramr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, Patrick McDaniel Ensemble Adversarial
Training: Attacks and Defenses. arXiv:1705.07204

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition
arXiv:1512.03385

[11] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model size arXiv:1602.07360

[12] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng Dual Path Networks
arXiv:1707.01629

[13] Gao Huang, Zhuang Liu, Kilian Q. Weinberger, Laurens van der Maaten Densely Connected
Convolutional Networks arXiv:1608.06993

7



Appendices

A Universal perturbation experiments

For all experiments we use the 1,000 images from the competition as our testing set. These are 299x299x3
images sourced from Flickr. The images cover 430 unique classes, with no class appearing more than 5 times.

We standardize to the 1,000 imagenet classes by dropping the logits from the 0th ”background” class in
the inception models.

We use:

• Inception v3: Ported from tensorflow-slim rather than from the torchvision models.

• Adv Inception v3: Ported from the cleverhans NIPS examples

• Inception Resnet v2: Ported from tensorflow-slim

• Ens Adv Inception Resnet v2: Ported from the cleverhans NIPS examples

• Renset152: From the torchvision models

We train universal perturbations with varying ensembles, as per the main paper. Inception v3, Adv
Inception v3, and Ens Adv Inception Resnet v2 are always in the ensemble. Inception Resnet v2 and
Resnet152 are never in the ensemble, and are included to demonstrate transfer to naturally trained models
and models with different architectures. Note that Resnet101 is almost always in the ensemble.

8



(a) african chameleon (b) brain coral (c) crt

(d) honeycomb (e) jigsaw1 (f) jigsaw2

(g) ladybug (h) spider web (i) tv

Figure 8: Universal perturbations for experiments

9



Inception v3 Inception Resnet v2
ε ε

Perturbation 4 8 12 16 4 8 12 16
Natural Images 949 998

african chameleon 857 576 307 147 928 640 362 196
brain coral 862 576 315 148 946 682 413 210

crt 795 522 289 144 867 591 368 233
honeycomb2 813 529 300 153 900 618 359 198

jigsaw3 876 663 426 254 956 787 581 370
jigsaw5 799 510 285 151 909 627 365 187
ladybug 794 505 289 145 911 622 356 182

spider web 726 407 185 88 936 604 300 135
tv 665 338 145 83 867 506 241 115

Adv Inception v3 Ens Adv Inc Res v2
ε ε

Perturbation 4 8 12 16 4 8 12 16
Natural Images 951 976

african chameleon 920 776 573 370 974 896 727 485
brain coral 917 758 549 355 969 863 661 411

crt 902 701 539 384 970 875 735 565
honeycomb2 889 699 483 300 971 877 690 476

jigsaw3 927 796 632 470 975 910 768 597
jigsaw5 915 728 529 355 967 836 632 415
ladybug 924 750 550 372 966 841 648 427

spider web 934 746 482 284 964 778 475 235
tv 932 733 478 287 967 716 417 211

Resnet 152
ε

Perturbation 4 8 12 16
Natural Images 945

african chameleon 888 656 376 185
brain coral 896 665 412 227

crt 899 732 491 316
honeycomb2 853 578 315 159

jigsaw3 833 523 241 98
jigsaw5 771 352 134 62
ladybug 910 775 569 352

spider web 852 576 333 158
tv 897 737 528 334

Figure 9: Top 1 correct for models against universal perturbations at various epsilons. Out of 1,000 images
in the competition dev set

10


